dfs
考虑任意两点在全排列中的位置,发现有n-1种,而另外n-2个点的位置有(n-2)!种。
然后两点位置可兑换,所以任意两点的贡献为Lengh * 2 * (n-1) * (n-2)!
问题就变成了求树上任意两点的距离,由于题目求的答案是我们所有点的贡献之和,所以我们只需要求出任意两点的距离和即可,可以转换成求每条边的贡献,每条边的贡献相当于这条边左边的节点数 * 右边的节点数 * 边权。
所以dfs一次求边贡献就好了。
#include#define INF 0x3f3f3f3f#define full(a, b) memset(a, b, sizeof a)#define FAST_IO ios::sync_with_stdio(false), cin.tie(0), cout.tie(0)using namespace std;typedef long long ll;inline int lowbit(int x){ return x & (-x); }inline int read(){ int ret = 0, w = 0; char ch = 0; while(!isdigit(ch)) { w |= ch == '-'; ch = getchar(); } while(isdigit(ch)) ret = (ret << 3) + (ret << 1) + (ch ^ 48), ch = getchar(); return w ? -ret : ret;}inline int gcd(int a, int b){ return b ? gcd(b, a % b) : a; }inline int lcm(int a, int b){ return a / gcd(a, b) * b; }template inline T max(T x, T y, T z){ return max(max(x, y), z); }template inline T min(T x, T y, T z){ return min(min(x, y), z); }template inline A fpow(A x, B p, C lyd){ A ans = 1; for(; p; p >>= 1, x = 1LL * x * x % lyd)if(p & 1)ans = 1LL * x * ans % lyd; return ans;}const int N = 200005;const int MOD = 1e9 + 7;int n, cnt, head[N], size[N], w[N<<1];struct Edge { int v, next, val;} edge[N<<1];vector ver;void addEdge(int a, int b, int c){ edge[cnt].v = b, edge[cnt].val = c, edge[cnt].next = head[a], head[a] = cnt ++;}void dfs(int s, int fa){ size[s] = 1; for(int i = head[s]; i != -1; i = edge[i].next){ int u = edge[i].v; if(u == fa) continue; w[u] = edge[i].val; dfs(u, s); size[s] += size[u]; } ver.push_back(1LL * size[s] * (n - size[s]) % MOD * w[s] % MOD);}int main(){ while(~scanf("%d", &n)){ full(head, -1), full(w, 0), full(size, 0), cnt = 0; ver.clear(); for(int i = 1; i <= n - 1; i ++){ int u = read(), v = read(), l = read(); addEdge(u, v, l), addEdge(v, u, l); } w[1] = 0, dfs(1, 0); ll ans = 0; for(int i = 0; i < ver.size(); i ++){ ans = (ans % MOD + ver[i] % MOD) % MOD; } for(int i = 1; i <= n - 1; i ++){ ans = ans * i % MOD; } printf("%lld\n", (ans << 1) % MOD); } return 0;}